多孔材料,多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。典型的孔结构有: 一种是由大量多边形孔在平面上聚集形成的二维结构;由于其形状类似于蜂房的六边形结构而被称为“蜂窝”材料; 更为普遍的是由大量多面体形状的孔洞在空间聚集形成的三维结构, 通常称之为“泡沫”材料。如果构成孔洞的固体只存在于孔洞的边界(即孔洞之间是相通的),则称为开孔;如果孔洞表面也是实心的,即每个孔洞与周围孔洞完全隔开, 则称为闭孔; 而有些孔洞则是半开孔半闭孔的。
相对连续介质材料而言, 多孔材料一般具有相对密度低、比强度高、比表面积高、重量轻、隔音、隔热、渗透性好等优点。具体来说, 多孔材料一般有如下六种特性:
机械性能
应用多孔材料能提高强度和刚度等机械性能, 同时降低密度, 这样应用在航天、航空业就有一定的优势, 据测算, 如果将飞机改用多孔材料, 在同等性能条件下, 飞机重量减小到原来的一半。应用多孔材料另一机械性能的改变是冲击韧性的提高, 应用于汽车工业能有效降低交通事故对乘客的创造伤害。
传播性能
波传播至两种介质的界面上时, 会发生反射和折射。由于多孔的存在, 增多了反射和折射的可能, 同时衍射的可能也增多了。所以多孔材料能起到阻波的作用。利用这种性质, 多孔材料可以用作隔音材料、减振材料和抗爆炸冲击的材料。
光电性能
多孔材料具有独特的光学性能, 微孔的多孔硅材料在激光的照射下可以发出可见光, 将成为制造新型光电子元件的理想材料。多孔材料的特殊光电性能还可以制出燃料电池的多孔电极, 这种电池被认为是下一代汽车有前途的能源装置。
渗透性
由于人们已经能制造出规则孔型而且排列规律的多孔材料,并且, 孔的尺寸和方向已经可以控制。利用这种性能可以制成分子筛, 比如气体分离膜、可重复使用的特殊过滤装置等。
吸附性
由于每种气体或液体分子的直径不同, 其运动的自由程度不同, 所以不同孔径的多孔材料对不同气体或液体的吸附能力就不同。可以利用这种性质制作出用于空气或水净化的气体或液体分离膜, 这种分离膜甚至还可重复使用。
化学性能
多孔材料由于密度的变小, 一般材料的活性都将增加。基于具有分子识别功能的多孔材料而产生的人造酶, 能大大提高催化反应速度。