模具冷却的重点可以概括为下列5个类别:
1、模制塑料的热性能和模具的建造材料。
2、从熔体准备到冷却循环时间的能量平衡。
3、冷却剂流速对传热效率的影响。
4、模具温度调节器的选择。
5、模具冷却的设计惯例。
为了形成一个稳定的部件,这个等量的热能必须被除掉。根本上讲,输出的能量必须与输入的能量相等。注意所有晶体材料的塑化要求的热能几乎是非晶体树脂的一倍。这在熔体准备时通常没有问题,尽管给料螺杆结构会影响熔体的准备。但是,对于烯烃材料而言两倍的热量必须被除掉,而且就具有竞争性的非晶体树脂而言通常还是在同一个循环时间内,它确实含有这一层意思。因此,这种工具对烯烃树脂就要求较多的模具冷却以使循环时间保持竞争性。这些树脂的结晶度使这一点成为一个非常重要的问题,因为除热速度太慢会影响晶体增加并影响制成品的翘曲和尺寸的稳定性。
从上表中可以看出,典型模具材料的热传导率(K)有很大的差异。K是热量能够在材料中行进(传输)的速度。这个值越高,热量的传输就更加有效。这个单位仅仅表示每单位时间可测量的热的数量,其他的特性保持不变。
铜是一种非常的传热材料(是P20的10倍),铝也是。然而,两种材料都比较软,都不用于大批量的生产工具。钛是一种热传导率非常低的硬金属。这种较差的热传导特征使得它能有效地用作热转动系统中的绝缘板。如果在某关键区域要求的热传输量很大,铍铜合金是的,它结合了传热性能和硬度两个特征。
输入的热量永远等于输出的热量。如果冷却系统或者模具冷却结构不充分,能量还会找到一种释放途径。然而,这一般是借助于工具两边的模具温度调节器,否则,部件会因过多的残留热量而脱模,或者必须延长循环时间以便有足够的时间消除热量。造成的困难是要在正常条件下使所有的能量释放出来。