在生产现场,由于受生产计划和技术条件的制约,要求故障诊断人员准确、简便和地诊断出液压设备的故障;要求维修人员利用现有的信息和现场的技术条件,尽可能减少拆装工作量,节省维修工时和费用,用简便的技术手段,在尽可能短的时间内,准确地找出故障部位和发生故障的原因并加以修理,使系统恢复正常运行,并力求今后不再发生同样故障。
正确分析故障是排除故障的前提,系统故障大部分并非突然发生,发生前总有预兆,当预兆发展到一定程度即产生故障。引起故障的原因是多种多样的,并无固定规律可寻。统计表明,液压系统发生的故障约90%是由于使用管理不善所致为了快速、准确、方便地诊断故障,必须充分认识液压故障的特征和规律,这是故障诊断的基础。
液压系统中的工作参数,如压力、流量、温度等都是非电物理量,用通用仪器采用间接测量法测量时,首先需利用物理效应将这些非电量转换成电量,然后经放大、转换和显示等处理,被测参数则可用转换后的电信号代表并显示。由此可判断液压系统是否有故障。但这种间接测量方法需各种传感器,检测装置较复杂,测量结果误差大、不直观,不便于现场推广使用。
液压系统在一定程度上为了尽可能的长时间地以良好的状态来进行维持轴承本来的性能,在进行操作的过程中需要进行保养、检修、以求防事故于未然。确保运转的可靠性,提高生产性、经济性。
液压系统在一定程度上,其保养采用其相应的机械运转条件的作业标准,定期进行,在进行操作的过程中其内容包括了监视运转状态、补充或更换润滑剂、定期拆卸的检查。液压系统作为运转中的检修事项,有轴承的旋转音、振动、温度、润滑剂的状态等等。
液压系统会根据其规定进行保养周期,在进行操作时需要对液压油液进行定期的分析,在一定程度上尤其需要警惕的是在卸下元件进行保养时,万万不可让污物进入液压系统,打开之前首先做清洁工作。当向油箱中加注液压油时,通过特定的注油连接口加油是很重要的,系统中的固体颗粒度应该不超过ISO/DIS 4406 16/13。