氧化皮质脆,没有延伸性,在机械作用下和热加工作用下,很容易产生龟裂而脱离。氧化铁和氧化亚铁在水作用下生成氢氧化铁,使得氧化皮膨胀而龟裂,甚至脱落。在原有的氧化皮上,总是存在着深达基体的裂纹,当电解质涌进裂纹后,铁和氧化皮构成原电池。氧化皮是阴极,铁作为阳极而加速腐蚀,因此氧化皮的面积越大,钢铁基体的腐蚀速度越快,腐蚀越严重。
氧化皮是钢铁在高温下发生氧化作用而形成的腐蚀产物,由氧化亚铁、四氧化三铁、三氧化二铁组成。从内向外为:氧化亚铁、四氧化三铁、三氧化二铁。其中氧化亚铁结构疏松,保护作用较弱,而四氧化三铁、三氧化二铁结构致密,有较好的保护性。一般减少金属氧化 的措施是:(1)料温在1000℃以下时,可 采用氧化性炉气,以便形成的氧化皮易于清除,而此时温度不高,氧化尚不激烈;(2) 料温在1000℃以上时,采用还原性炉气,这时应减少进入炉内的空气量, 以免氧化皮产生过多。此外,采用快速加 热、缩短加热时间和少氧化、无氧化加热方 法,都是积极减少金属氧化的措施。
稀有金属是在地壳中含量较少,分布稀散或难以从原料中提取的金属。如锂、铍、钛、钒、锗、铌、钼、铯、镧、钨、镭等。
按其物理、化学性质及生产方法上的不同可分为:
(1)稀有轻金属,如铍、锂、铷、铯等;
(2)稀有贵金属,如铂、铱、锇等;
(3)稀有分散金属,如镓、锗等;
(4)稀土金属,如、钪钇、镧、铈、钕等;
(5)难熔稀有金属,如钛、锆、钽等;
(6)放射性稀有金属,如钋、镭、锕、铀、钚等。
稀有金属主要用于制造特种钢、超硬质合金和耐高温合金,在电气工业、化学工业、陶瓷工业、原子能工业及火箭技术等方面。
稀有金属的名称具有一定的相对性,随着人们对稀有金属的广泛研究,新产源及新提炼方法的发现以及它们应用范围的扩大,稀有金属和其它金属的界限将逐渐消失,如有的稀有金属在地壳中的含量比铜、汞、镉等金属还要多。
有的稀有金属在物理-化学性质上近似而不容易分离成单一金属。过去制取和使用得很少,因此得名为稀有金属。19世纪即有稀有元素(rareelements)一词,20世纪20年代在此基础上定名为稀有金属。稀有金属开发较晚,所以有时还称为新金属(newmetals)。第二次世界大战以来,由于新技术的发展,需求量的增大,稀有金属研究和应用迅速发展,冶金新工艺不断出现,这些金属的生产量也逐渐增多。稀有金属已经不稀。稀有金属所包括的金属也在变化,如钛在现代技术中应用日益广泛,产量增多,所以有时也被列入轻金属。