空间桁架的节点为光滑球铰结点,杆件轴线都通过联结点的球铰中心并可绕球铰中心的任意轴线转动。每个节点在空间有三个自由度。节点和杆件数的关系为W=3j-n,W>0为几何可变桁架,W=0为几何不变且无多余约束的空间桁架。空间桁架和平面桁架一样,可用部分截割法和节点法求出桁架内所有杆件所受的内力。部分截割法则是利用空间任意力系的六个平衡条件求出各杆的内力。节点法是截取节点为隔离体,利用每个节点所受的空间汇交力系的三个平衡条件,求出各杆的内力。 [2]
从力学方面分析,桁架外形与简支梁的弯矩图相似时,上下弦杆的轴力分布均匀,腹杆轴力小,用料省;从材料与制造方面分析,木桁架做成三角形,钢桁架采用梯形或平行弦形,钢筋混凝土与预应力混凝土桁架为多边形或梯形为宜。
足够强度—不发生断裂或塑性变形;足够刚性—不发生过大的弹性变形;足够稳定性—不发生因平衡形式的突然转变而导致坍塌;良好的动力学特性—抗震、抗风性。
桁架的设计要求: 要有符合要求的杆件;要有良好的连接件,包括铆钉、销钉及焊缝的连接。这些就涉及到桁架的类型、杆件的尺寸和材料,但首先是静力学分析。
工程用的桁架节点,一般是具有一定刚性的节点而不是理想的铰接节点,由于节点刚性的影响而出现的杆件弯曲应力和轴向应力称为次应力。计算次应力需考虑杆件轴向变形,可用超静定结构的方法或有限元法求解。空间桁架由若干个平面桁架所组成,可将荷载分解成与桁架同一平面的分力按平面桁架进行计算,或按空间铰接杆系用有限元法计算。