超精加工是采用装在振动头上的细粒度油石对精加工表面进行精整加工。砂带磨削是采用高速运转的环形砂带加工工件表面的磨削。镜面磨削是达到表面粗糙度的磨削方法。磨削后的工件,表面粗糙度不大于0.01微米,光如镜面,可以清晰成像。精密加工在制造业中处于十分重要的地位,常用于精密丝杠、精密齿轮、精密蜗轮、精密导轨和精密轴承等关键零件的加工。
超精密特种加工
加工精度以纳米,甚至终以原子单位(原子晶格距离为0.1~0.2纳米)为目标时,切削加工方法已不能适应,需要借助特种加工的方法,即应用化学能、电化学能、热能或电能等,使这些能量超越原子间的结合能,从而去除工件表面的部分原子间的附着、结合或晶格变形,以达到超精密加工的目的。属于这类加工的有机械化学抛光、离子溅射和离子注入、电子束曝射、激光束加工、金属蒸镀和分子束外延等。
这些方法的特点是对表面层物质去除或添加的量可以作极细微的控制。但是要获得超精密的加工精度,仍有赖于精密的加工设备和的控制系统,并采用超精密掩膜作中介物。例如超大规模集成电路的制版就是采用电子束对掩膜上的光致抗蚀剂(见光刻)进行曝射,使光致抗蚀剂的原子在电子撞击下直接聚合(或分解),再用显影剂把聚合过的或未聚合过的部分溶解掉,制成掩膜。电子束曝射制版需要采用工作台定位精度高达±0.01微米的超精密加工设备。
科技的发展对精密加工和超精密加工技术也提出了更高的要求。从大到天体望远镜的透镜,小到大规模集成电路线宽μm要求的微细工程和微机械的微纳米尺寸零件,不论体积大小,其尺寸精度都趋近于纳米;零件形状也日益复杂化,各种非球面已是当前非常典型的几何形状。微机械技术为超精密制造技术引来一种崭新的态势?它的微细程度使传统的制造技术面临一种新的挑战,促进了各种产品技术性能的提高,发展过程呈现出螺旋式循环发展,直接对科学技术的进步和人类文明作出贡献。对产品高质量、小型化、高可靠性和高性能的追求,使超精密加工技术得以迅速发展,现已成为现代制造工业的重要组成部分。