铁碳合金,是以铁和碳为组元的二元合金。铁基材料中应用多的一类——碳钢和铸铁,就是一种工业铁碳合金材料。钢铁材料适用范围广阔的原因,首先在于可用的成分跨度大,从近于无碳的工业纯铁到含碳4%左右的铸铁,在此范围内合金的相结构和微观组织都发生很大的变化;另外,还在于可采用各种热加工工艺,尤其金属热处理技术,大幅度地改变某一成分合金的组织和性能。
铁碳合金中合金相的形成,与纯铁的晶体结构及碳在合金中的存在形式有关。纯铁有三种同素异构状态:912℃以下为体心立方晶体结构,称α-Fe;912~1394℃为面心立方晶体结构,称γ-Fe;1394℃以上,又呈体心立方结构,称δ-Fe。在液态,在低于7%碳范围,碳和铁可完全互溶;在固态,碳在铁中的溶解是有限的,并且溶解度取决于铁(溶剂)的晶体结构。与铁的三种同素异构物相对应,碳在铁中形成的固溶体有三种:α固溶体(铁素体)、γ固溶体(奥氏体)和δ固溶体(δ铁素体)。这些固溶体中,铁原子的空间分布与α-Fe、γ-Fe和δ-Fe一致,碳原子的尺寸远比铁原子为小,在固溶体中它处于点阵的间隙位置,造成点阵畸变。碳在γ-Fe中的溶解度,但不超过2.11%;碳在α-Fe中的溶解度不超过0.0218%;而在δ-Fe中不超过0.09%。当铁碳合金的碳含量超过在铁中的溶解度时,多余的碳可以以铁的碳化物形式或以单质状态(石墨)存在于合金中,可形成一系列碳化物,其中Fe3C(渗碳体,6.69%C)是亚稳相,它是具有复杂结构的间隙化合物。石墨是铁碳合金的稳定平衡相,具有简单六方结构。Fe3C有可能分解成铁和石墨稳定相,但该过程在室温下是极其缓慢的。
低碳钢的时效通常有淬火时效和应变时效两种,都是由间隙元素作用引起的,主要是由于碳、氮、氧的重新分布所造成。
淬火时效即钢由高温快速冷却后性能随时间而变化的现象。钢中含碳量、脱氧程度和含氮量对淬火时效都有很大影响,低碳钢、脱氧不充分的沸腾钢和含氮量较高的钢发生淬火时效显著,含碳约0.3%的中碳钢,由淬火时效所引起的性能变化已大为减弱,含碳约0.6%的高碳钢,实际上不起时效硬化作用。
生产性废钢铁
生产性废钢铁一部分是各个使用钢材制造终端使用商品的边角余料;这一部分通过市场交易回到钢铁企业进行再次冶炼。另一部分是各钢铁企业自产的返回废钢铁,是企业内部各个生产单元诸如,车间、分厂在生产过程中下来的边角余料例如:切头、切尾、铸余、废品、试样、钢屑、下脚料等。生产性废钢铁的特点是:质量很好,钢水收得率高,钢种明确,化学成分清楚。管理好这部分废钢铁对于降低生产成本有着重要愈义。但是,随着各个行业的技术进步和对节能降耗降低成本的追求,以及钢铁企业实现转炉(电炉)+全连铸以来,成材率提高,自产返回废钢铁减少,生产性废钢铁趋于减少趋势。