●在算法过程中频繁的数据混洗使得NTT难以在计算集群中分布,无法并行计算,并且由于需要从大型数据集中加载和卸载数据,在硬件上运行时需要大量带宽。即使硬件操作很快,这可能也会导致速度变慢。例如,如果硬件芯片的内存为16GB或更少,那么在100GB的数据集上运行NTT将需要通过网络加载和卸载数据,这可能会大大降低操作速度。
简单来说,在其他参数相同或者差不多的情况下,内存和带宽综合决定终某个硬件在Aleo项目上的算力大小。
带宽这个概念估计很多人不是很了解,之前只是关注显存,虽然说目前Aleo官方还没有正式公布的PoSW算法,但是从目前的表述来看把NTT/FFT这个漏洞堵上是个必然,而且本身零知识证明算法是对NTT/FFT有要求的。
芯片的硬件指的是运行指令的物理平台,包括处理器、内存、存储设备等等。芯片数据中常出现的“晶体管数量”、“7nm制程”、“存储”等,往往指的就是硬件参数。
软件则包括固件、驱动程序、操作系统、应用程序、算子、编译器和开发工具、模型优化和部署工具、应用生态等等。这些软件指导硬件如何响应用户指令、处理数据和任务,同时通过特定的算法和策略优化硬件资源的使用。芯片数据中常出现的“x86指令集”、“深度学习算子”、“CUDA平台”等,往往指的就是芯片软件。
在分析之前,我们先看一下ASIC(Application Specific Integrated Circuit),中文全称是“专用集成电路”。这里特别强调“专用”,“专用”意味着针对单一项目来说会更加有竞争力。相对比,GPU(显卡)是通用计算处理芯片,所以在单一项目上来说“专用”肯定比“通用”更有竞争力。